Forced-Dissipative Shallow-Water Turbulence on the Sphere and the Atmospheric Circulation of the Giant Planets
نویسندگان
چکیده
Although possibly the simplest model for the atmospheres of the giant planets, the turbulent forceddissipative shallow-water system in spherical geometry has not, to date, been investigated; the present study aims to fill this gap. Unlike the freely decaying shallow-water system described by Cho and Polvani, equilibrium states in the forced-dissipative system are highly dependent on details of the forcing and the dissipation. For instance, it is found that for a given equilibrated energy level, the steadiness of zonal jets depends crucially on the balance between forcing and dissipation. With long (up to 100 000 days) high-resolution (T170) calculations, the dependence of the equilibrium states on Rossby number Ro and Rossby deformation radius LD is explored, for the case when the dissipation takes the form of hypodiffusion (acting predominantly at large scales) and the random forcing at small scales is correlated in time. When LD is large compared to the planetary radius, zonal jets are verified to scale closely with the Rhines scale over a wide range of Ro; furthermore, the jets at the equator are found to be both prograde and retrograde with approximately equal likelihood. As LD is decreased, the equatorial jets become increasingly and consistently retrograde, in agreement with the freely decaying turbulence results. Also, the regime recently discussed by Theiss, where zonal jets are confined to low latitudes, is illustrated to emerge robustly in the limit of small LD. Finally, specific calculations with parameter values typical of the giant planets are presented, confirming many of the earlier results obtained in the freely decaying case.
منابع مشابه
“weather” Variability of Close-in Extrasolar Giant Planets
Shallow-water numerical simulations show that the atmospheric circulation of the close-in extrasolar giant planet (EGP) HD 209458 b is characterized by moving circumpolar vortices and few bands/jets (in contrast with ∼ 10 bands/jets and absence of polar vortices on cloud-top Jupiter and Saturn). The large spatial scales of moving circulation structures on HD 209458 b may generate detectable var...
متن کاملUniversal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets.
The Kolmogorov-Batchelor-Kraichnan (KBK) theory of two-dimensional turbulence is generalized for turbulence on the surface of a rotating sphere. The energy spectrum develops considerable anisotropy; a steep -5 slope emerges in the zonal direction, while in all others the classical KBK scaling prevails. This flow regime in robust steady state is reproduced in simulations with linear drag. The co...
متن کاملAtmospheric Circulation of Close-In Extrasolar Giant Planets: I. Global, Barotropic, Adiabatic Simulations
We present results from a set of over 300 pseudospectral simulations of atmospheric circulation on extrasolar giant planets with circular orbits. The simulations are of high enough resolution (up to 341 total and sectoral modes) to resolve small-scale eddies and waves, required for reasonable physical accuracy. In this work, we focus on the global circulation pattern that emerges in a shallow, ...
متن کاملThe structure of zonal jets in shallow water turbulence on the sphere
The large-scale motions of planetary atmospheres and oceans, constrained by strong stable stratification and rapid rotation, are characterized in part by quasi-two dimensional turbulent motion and in part by coherent structures, such as vortices, zonal jets, and low-frequency waves. These motions are intimately linked and understanding their complex and multiscale interactions presents a comple...
متن کاملCHANGING FACE OF THE EXTRASOLAR GIANT PLANET, HD 209458b
High-resolution atmospheric flow simulations of the tidally-locked extrasolar giant planet, HD209458b, show large-scale spatio-temporal variability. This is in contrast to the simple, permanent day/night (i.e., hot/cold) picture. The planet’s global circulation is characterized by a polar vortex in motion around each pole and a banded structure corresponding to ∼3 broad zonal (east-west) jets. ...
متن کامل